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A semi-implicit orbit-averaged time-integration algorithm has been successfully

implemented in a gyrokinetic particle simulation code for the study of self-consistent phenomena

in a strongly magnetized plasma.  The semi-implicit aspect of the integration scheme relaxes the

timestep constraints required to insure numerical stability.  The orbit averaging is useful in

reducing statistical noise and relaxes the statistical constraints for kinetic simulation.  For

appropriate applications, the semi-implicit orbit-averaged algorithm should be more efficient

than are traditional particle-in-cell plasma simulation algorithms with explicit time-integration

schemes.  Both a linear numerical dispersion analysis and illustrative simulation examples are

presented.

1. Introduction

Kinetic phenomena in laboratory and space plasmas span many orders of magnitude

making direct numerical solution of the fundamental equations computationally intensive (if not

hopeless) in many circumstances [1].  This paper presents first results from the implementation

of a semi-implicit orbit-averaged particle simulation algorithm that addresses the disparate

timescale problem in the simulation of kinetic plasma phenomena.  This study continues our

earlier work [2] in which model algorithms and linear numerical dispersion analyses were

presented that introduced both semi-implicit and semi-implicit orbit-averaged algorithms for self-



consistent particle simulation of plasmas.  Here we report our experience implementing a semi-

implicit orbit-averaged time-integration scheme in an electrostatic gyrokinetic particle simulation

algorithm with kinetic electrons and ions [3].  We have determined that modifications to the

basic algorithm presented in [2] are required to suppress a slowly growing numerical error.  A

linear dispersion analysis of the revised algorithm and results from a few illustrative simulation

examples are presented.  The analysis and examples demonstrate that the semi-implicit orbit-

averaged algorithm relaxes constraints on both the timestep required for stability of the highest

frequency waves in the model and the statistical resolution.  The combination of implicit time

integration and orbit averaging leads to a more efficient self-consistent particle code for

appropriate physics applications.  However, the improvement in efficiency is sensitive to the

details of the specific physics application.

The motivation for this work, that reported in [2], and the earlier work on direct implicit

particle simulation [4] and orbit averaging [5,6] is the desire to study time-dependent, collective

kinetic phenomena in a plasma having a wide range of timescales so that the computational

problem is quite stiff [1].  The class of phenomena motivating our specific choice of a

gyrokinetic particle code as a testbed for a semi-implicit orbit-averaged time-integration scheme

is low-frequency microturbulence in magnetically confined plasmas, e.g., drift-wave instabilities.

The gyrokinetic algorithm analytically removes the cyclotron timescale by a formal time

averaging [3], while retaining the effects of the finite Larmor radius on the interaction of the

particles with the self-consistent fields for frequencies much less than the cyclotron frequency.

This assumption is compatible with a large class of drift-wave instabilities and low-frequency

magnetohydrodynamic (MHD) and resistive modes that are believed to contribute significantly to

the turbulent transport of energy and particles observed in tokamak experiments.  Even with the

use of the gyrokinetic formalism, the kinetic simulation of drift-wave instabilities in tokamaks

remains a stiff problem.  The timescales of electrons transiting across a drift wave following the

equilibrium magnetic field lines are many orders of magnitude shorter than the periods of the

drift waves producing transport.  Furthermore, an explicit time integration of the electrostatic



equations with kinetic electrons is subject to a timestep constraint set by the highest frequency

normal mode, ωh ∆t < 1 where ωh ≡ (k||/k⊥)(mi/me)1/2 Ωi where Ωi=eB0/mic is the ion cyclotron

frequency, mi/me is the mass ratio, and k||/k⊥ is the ratio of the parallel and perpendicular

wavenumbers with respect to the equilibrium magnetic field; ωh is typically much larger than the

drift-wave frequencies.  As explained in [2], the semi-implicit orbit-averaged algorithm seeks to

relax the timestep constraint set by ωh and reduce the statistical constraint on the electrons

without forfeiting an accurate calculation of their trajectories.

The paper is organized as follows.  In Sec. 2 we describe our implementation of the semi-

implicit orbit-averaged gyrokinetic algorithm introduced in [2].  The linear dispersion analysis of

this integration scheme in [2] indicated that exponentially growing modes can be stabilized at

large timestep.  However, trial simulations reveal numerically unstable zero-frequency modes

that grow algebraically in time.  A variant of this algorithm is then introduced, and a linear

dispersion analysis shows that the stability boundary for exponentially growing modes is

extended to a timestep that is significantly larger than the maximal stable timestep for the explicit

time-integration scheme used in [3].  The effects of spatial filtering and interpolation onto a

spatial grid modify the linear dispersion analysis.  Simulation results for a few test cases using

the revised algorithm are presented in Sec. 3.  A simulation of an ion-temperature-gradient

instability [7] is used as a convenient test problem with which to compare the simulation results

of our algorithm and those from an explicit integration scheme.  These results are in substantial

agreement with those published in [7] for small timestep.  In this example, finite-amplitude

effects limit how large a timestep may be used and limit the usefulness and applicability of orbit

averaging.  Nevertheless, it is demonstrated that orbit averaging can lead to a substantial

reduction of the number of particles.  Additional simulations for a stable ion-temperature-

gradient mode are reported that illustrate the stability properties of the revised semi-implicit

orbit-averaged algorithm and demonstrate both its noise-reduction characteristics and improved

computational efficiency.  Some concluding remarks are given in Sec. 4.



2. Semi-Implicit Orbit-Averaged Algorithms

In this section we shall begin by reviewing the algorithm introduced in [2] and describing

both the results of a linear stability analysis and the failure of this algorithm because of a zero-

frequency error that grows linearly in time.  A revised algorithm is introduced that is designed to

remove the secularly growing error.  A linear dispersion analysis for the highest-frequency, cold-

plasma normal mode is then presented.  Some comments on how spatial grid effects and spatial

filtering alter the linear dispersion relation are also given here.

2.1 First Algorithm

The first semi-implicit orbit-averaged algorithm was introduced in [2] for gyrokinetic

simulation.  The electrons were modeled as a drift-kinetic species (zero Larmor radius), while

Larmor radius effects were retained in the gyrokinetic limit for the ions.  Equations (17-21) in [2]

describe the scheme in detail.  The basic algorithm is composed of the following elements.  In an

electrostatic model, the electrons are advanced with a small timestep ∆te from N∆ti to (N+1)∆ti

using the electric field EN = –∇φΝ in a static magnetic field.  The electron charge and current

densities ne and Je are accumulated on the spatial grid at each timestep from the particle data

{xe, ve} and then time-averaged to form <ne> and <Je>N+1/2.  The ion gyro-centers are then

advanced in a predictor step from N∆ti to (N+1)∆ti  using the appropriately gyro-averaged

electric field [3].  A predicted gyro-averaged ion number density n− i is collected from the ion

positions { }i
N 1

~
+x  displaced by their Larmor radii. The self-consistent electric potential 1

~
+Nφ  is

determined by the solution of the semi-implicit gyrokinetic Poisson equation,
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and C0 is a control parameter for the implicitness. Recall that the gyrokinetic ordering [2,3]

assumes that the density perturbations considered, although finite, are small in amplitude, and the

inhomogeneities of the unperturbed plasma are weak. In consequence, the plasma parameters

appearing in the ion polarization and the semi-implicit electron susceptibility are homogeneous

and constant. The ions are then advanced in a corrector step from N∆ti to (N+1)∆ti  using

11
~~

++ −∇= NN φE  and EN. The corrected value of i
Nn 1+  is then calculated and used in Eq.(1) to

obtain φN+1. The timestep advance to (N+1)∆ti is completed by using an electric field

E=EN+2C0(EN+1-EN), where 11 ++ −∇= NN φE * to correct the advance of the electrons from N∆ti to

(N+1)∆ti.

A linear stability analysis was performed in [2] to obtain the following model dispersion

relation in the limit of a cold, non-drifting plasma and with spatial grid and interpolation effects

neglected:
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22222
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where λ=exp(-iω∆ti), 
222

||
2 )/)(/( ieih mmkk Ω≡ ⊥ω , and 22

|| ⊥<< kk . The parallel and perpendicular

subscripts indicate the orientation of the wavenumber components relative to the magnetic field.

For C0>1/4, there are damped solutions (|λ|<1) of Eq.(2): for 122 >>∆ ih tω ,

)}/1(1),2/(11{ 22
0 ih tOC ∆+−−= ωλ ; for 122 <<∆ ih tω  there are damped solutions with

Re(ω)≈±ωh.  In Fig. 1 we plot the modulus of the amplification factor for the two roots of Eq.(2).



Thus, for C0>1/4 there are no exponentially growing modes.  However, perturbations growing

with a power-law dependence on time are not excluded.

In our unsuccessful attempts to implement this algorithm, we discovered several

difficulties.  The first difficulty was that Eq.(1) treats the ion and electron source terms in Eq.(1)

on an unequal footing.  The electron current was accumulated and then its divergence calculated

on the grid, while an ion charge density was calculated directly.  To put the electrons and ions on

a more equal footing with respect to finite-differencing, which might be important in resolving

small deviations from quasi-neutrality, we made the replacement ( ) i
N

i
N

i
N nne 11

~44 ++ ⋅∇−=− Jππ

in Eq.(1), where i
N 1

~
+J  is the gyro-averaged ion current density at (N+1)∆ti on the ion predictor

step and is determined from i
N 1}~,~{ +vx . On the ion corrector step, i

N 1
~

+J  was accumulated from

i
N 1},{ +vx . This modification leaves the dispersion relation derived in Eq.(2) unchanged.

However, a second difficulty remains and manifests itself in zero-frequency errors in the

potential and perturbed plasma displacements that grow approximately linearly in time (Fig.2).

Although we were able to verify the algorithm's stability properties with respect to exponentially

growing modes for large values of  ωh2∆ti2 when C0>1/4, or instability when C0<1/4, the

presence of the secularly growing error frustrated successful simulation of physical instabilities

like the ion-temperature-gradient (ITG) mode [7].  We believe that the secularly growing errors

derive from grid errors and statistical effects in the ion and electron source terms on the right side

of Eq.(1) that linearly accrue in φ at each timestep on account of the time integration of Eq.(1).

In k-space, Eq.(1) has the form φN+1=φN+LkSk, where Lk is a linear operator and Sk is a source.

By replacing Eq.(1), with a semi-implicit Poisson equation that uses the ion charge density and

the orbit-averaged electron charge density, we were able to remove the secularly growing error.

2.2 Revised Algorithm

We have revised our semi-implicit orbit-averaged algorithm to remove the secularly

growing errors as follows.  The interleaving of the ion and electron advances is diagrammed in



Fig. 3.  The electrons are advanced in a predictor step from (N+1/2)∆ti to (N+3/2)∆ti using a

small timestep ∆te and the electric field EN.  The orbit-averaged electron number density <ne>N+1

is accumulated by averaging the electron densities calculated at each electron timestep over this

time interval.  The ions are advanced in a predictor step from N∆ti to (N+1)∆ti using the larger

timestep ∆ti and the electric field EN+1 in a conventional way [2,3].  A gyroaveraged ion number

density i
Nn 1+  is accumulated at (N+1)∆ti.  The revised semi-implicit gyrokinetic Poisson equation

is solved following the ion advance,
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where χe is the semi-implicit susceptibility tensor and is defined in the following.

The susceptibility is derived by relating the linearized drift-kinetic electron response to

the electric field.  For a slab configuration with yzB ˆˆ0 yBB += , |B0/By|<<1, and equilibrium

density gradient in the x direction, both the parallel electron response and the perpendicular E×B

drift lead to charge density perturbations.  Hence, Eq.(3) in the drift-kinetic limit for the electrons

becomes
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The two semi-implicit terms contribute to relaxing the ωh∆ti stability constraint and to

compensating for the lack of centering in the electron charge density response which impacts the

temporal accuracy.  The validity criterion for linearization leading to the semi-implicit

susceptibility is obtained from the straightforward extension of the corresponding condition

derived for the direct implicit method [4,8] to a magnetized plasma, 1)/( 22
|| >∆ ie tmek φ . This



condition is a statement that the parallel displacement produced by the acceleration due to the

electric field during a timestep must be smaller than a relevant wavelength to be resolved. This is

a timestep constraint on the integration of the electron trajectory that must be satisfied whether or

not the integration scheme is implicit and does not limit the nonlinearity of the electron response.

The ions are advanced in a corrector step from N∆ti  to (N+1) ∆ti  using 11
~~

++ −∇= NN φE

and EN  as described in [2,3].  The corrected ion positions { }i
N 1+x  are used to accumulate i

Nn 1+ ,

and Eq.(4) is solved to determine the corrected value of 1+Nφ  from which 11 ++ −∇= NN φE .  Next

the electron trajectories from (N+1/2)∆ti to (N+3/2)∆ti are recomputed in a corrector step again

using a small timestep ∆te. The electrons are advanced with an electric field

( ) NN CC EEE 010 1~ −+= +  for this corrector step.  This completes the computational cycle.

The highest frequency normal mode supported by these equations in a cold uniform

plasma has frequency ωh defined in Sec. 1.  The linear dispersion relation including ∆t effects is

obtained straightforwardly using the methods of Refs. [1,2,5,6].  For the ωh mode, the parallel

electron response dominates the right side of Eq.(4); and 2222222 )/()/( ∇>>∇Ω→∇Ω ⊥⊥ ipiipi g ωω

for a cold, high-density plasma.  For a small-amplitude, linear charge density perturbation, the

right side of Eq.(4) becomes
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where N*=∆ti/∆te (we assume that  N*>>1).  Note that Eq.(5) corrects a typographical error in

Eq.(7) of [6].

The linearized electron trajectory can be reduced to
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where E*=EN on the predictor advance and E*=C0EN+1+(1-C0)EN on the corrector advance;  φN+1

is related by Eq.(4) and (5) to e
Nx 2/1|| + , e

Nx 2/1|| + , and φN.Using the corrector version of Eqs.(6a) and

(6b), we can relate the linearized values of ex ||  and ev ||  directly to NE ||  and 1|| +NE . We then

introduce the amplification factor λ=exp(-iω ∆ti) and Fourier transform the spatial dependence to

obtain
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where ex~ , ev~ , and φ
~

are Fourier amplitudes.  Equations (4) and (5) are also Fourier analyzed to

remove the spatial dependence, and we substitute φ
~~

|||| ikE −= , and ex~  and ev~  from Eqs.(7a) and

(7b) to obtain the dispersion relation

λ (λ − 1)2 + α(λ2 + 4λ + 1)(C0λ + 1 - C0) = 0 (8)

where 6/22
ih t∆≡ ωα .

There are three roots of Eq.(8) in general.  For α>>1, there is one root λ=(C0-1)/C0 that is

stable for C0≥1/2 and two unstable roots 32 ±−=λ . For C0=1 there is one stable root λ=0 and

two additional roots that are stable if α ≤ 2 , i.e., 1222 ≤∆ ih tω . The general solution of Eq.(8)

indicates that there is at least one unstable root for C0<1 or 1222 >∆ ih tω . As C0 is increased above



C0=1, the instability threshold on the timestep decreases below 1222 =∆ ih tω . Sample solutions for

|λ| as a function of α are plotted in Fig. 4.  We  conclude   that  the  revised  semi-implicit  orbit-

averaged   algorithm    relaxes  the  timestep  constraint  from )1(22 Otih ≤∆ω  to 1222 ≤∆ ih tω . We

note that in contrast to the direct-implicit algorithm [4], wherein the timestep set by the stability

of the highest frequency mode is completely relaxed, the timestep constraint for this semi-

implicit orbit-averaged algorithm is only partially relaxed. Of course, there are residual timestep

constraints on any algorithm set by accuracy considerations in calculating the particle trajectories

and the dielectric response [8], e.g., k⋅v∆t<1, so that an arbritrarily large timestep could never be

used in practice. In Sections 3 and 4, we will describe how the 1222 ≤∆ ih tω  constraint for the

revised algorithm must compete with other timestep constraints that are sensitive to the specific

physics application.

Our implementation of the semi-implicit orbit-averaged algorithm includes spatial

filtering and spatial grid effects arising from the interpolations of the electric field force from the

grid to the particles and the electron charge density from the particles to the grid.  These alter the

algorithm and the linear dispersion analysis in the same fashion as for the direct-implicit method

[8,9].  The spatial smoothing factors, e.g., a k-space filter like exp(−k2a2), and the interpolation
factors that arise in 

11 ++ −
N

ei
N nn  on the right side of Eqs.(3) and (4) should be matched by the

same factors in the semi-implicit susceptibility.  This is straightforward and we refer to [9] for

explicit formulae.  The dominant effect is a reduction of the effective value of 2
hω  as (k∆x/2)2 or

k2a2 increases. As a consequence, the instability threshold on 22
ih t∆ω  becomes wavenumber

dependent. Of course, thermal effects introduce additional dispersion; but this is physical. The

Gaussian k-space filter can be suppressed by setting the smoothing factor a=0. There is nothing

in the dispersion analysis to indicate that this cannot be done, but we have not tried it. Having a

tunable spatial filter has been useful in our experience with other particle codes, and we will

make use of it here.

Before concluding this section. We comment on accuracy considerations associated with

the semi-implicit susceptibility. A criterion for whether low-frequency and long wavelength



modes of physical interest are being distorted can be derived from linear theory. The criterion

derives from constraining the implicit susceptibility to be smaller than the linear electron

susceptibility for the physical modes of interest.. For example, consider the linear electron

susceptibility for adiabatic electrons, 22/1 ee k λχ = . The semi-implicit susceptibility produces a

small modification if 2222
||0 /1 λω <∆ ipe tkC , which is equivalent to 1222

||0 <∆ ie tvkC  and similar to

the stricter stability condition Eq.(41) in Ref.[6] involving the largest wavenumber retained.

Because the modes of interest must satisfy 12
||

2
|| <<∆xk  for good resolution, this constraint does

not preclude ie tt ∆<<∆ . With a sufficiently small ∆ti, the longest, most important parallel

wavelength will suffer an acceptably small distortion of the dielectric response because of the

semi-implicit susceptibility.

3. Simulation Test Cases

The performance of the two-dimensional implementation of the revised semi-implicit

orbit-averaged algorithm has been assessed in two types of test cases so far.  The first test case

was the unstable ITG mode investigated earlier in [7].  The second set of test cases was for a

plasma that was stable to the ITG mode.

3.1 Ion-Temperature-Gradient Instability

In Figs. 5, 6, and 7, we show results from gyrokinetic simulations of an ηi=4 ITG

instability, where ηi ≡ (d ln Ti/dx)/.(d ln ni/dx). Simulation results from an explicit, electron

subcycled gyrokinetic code are presented in Fig. 5.  The semi-implicit orbit-averaged algorithm

was used to produce the results shown in Figs. 6 and 7.  With electron subcycling [10], Poisson's

equation and the electron equations of motion are solved together at each electron timestep

∆te. The ions are advanced using a time-averaged electric field and a larger timestep that is an

integer multiple of the electron timestep.  The subcycling choreography and the stability



properties differ slightly depending on whether the ratio of the ion timestep to the electron

timestep is odd or even; odd is preferred [10].  The value of the subcycling parameter was

N∗=∆ti/∆te=3 for the simulation results shown in Figs. 5, 6, and 7.  Because the ion gyrokinetic

particle advance involves a much more complicated calculation than the electron drift-kinetic

advance (the ion calculation is ∼5 times more time consuming), there is a great benefit in

computational efficiency from electron subcycling if it is compatible with accuracy and stability

considerations.

A 16×16 grid was employed in all of the ITG test cases, Te=Ti, By/B0=0.01, no magnetic

shear, and ix ρ=∆ , where ( ) iiii mT Ω= // 2/1ρ  is the thermal ion Larmor radius. In addition,

Lee's multiscale treatment of the ion temperature and density gradients was used [3]. There were

64 electrons and ions per cell used in the simulations shown in Figs. 5 and 6. There were 32

electrons and 64 ions per cell used in the orbit-averaged simulations whose results are displayed

in Fig. 7. From linear theory, the complex frequency for the (kx,ky)=(1,−1) (in units of 2π/L)

mode is ω /Ωi = 0.007 + 0.005i [7]. The unit charge per electron was twice that of the ions for the

case with half as many electrons and ions. Further significant reduction of the number of orbit-

averaged electrons relative to the number of ions did not lead to results with acceptable accuracy

for the ηi=4 test case.

We note that there is reasonably good agreement between the simulation results shown in

Figs. 5, 6, and 7.  There is a significant degree of nonlinearity in the ηi=4 test case which

influences the observed results and the best choice of simulation parameters.  The mode

frequency observed is significantly shifted by nonlinear effects from its linear value [7], and the

maximum ion and electron velocities (derived from the E×B velocity) are large enough to limit

the choice of timesteps.  In fact, we noticed that there was sometimes a tendency for a strongly

peaked potential structure to form, which was accompanied by a strong velocity vortex for both

species.  Once a strong velocity vortex formed, smaller timesteps were needed in both the

explicit and semi-implicit simulations to insure that v∆t<∆x for both species.  To the extent that

finite-amplitude effects narrow the disparity between the electron and ion velocities, so that the



ions are not much slower than the electrons, the improvement in efficiency to be gained from

subcycling and orbit averaging diminishes.  This unstable ηi=4 example establishes that the

revised semi-implicit algorithm can obtain results that are in satisfactory agreement with those of

a published benchmark, but no improvement in computational efficiency was achieved in this

particular case because of finite-amplitude effects.

3.2 Simulation of a Warm, Quiescent, Nonuniform Plasma

The second test case set confirms some of the stability characteristics of the revised semi-

implicit algorithm and demonstrates that a gain in computational efficiency can be obtained.  In

Fig. 8 we present simulation results for |eφ/Te| for the (kx,ky)=(1,−1) mode as a function of time

from three simulations with ηi=1, Te=Ti, xi ∆=ρ , 16×16 grid, a smoothing factor exp(−k2a2)

with a=1, and different choices of C0, N∗, and ωh∆ti. In all three simulations there were 256 ions

and 64 electrons per cell. In Fig. 8a, C0=1.04, N∗=16, and ωh∆ti =1.86; and the simulation is

numerically stable. The simulation results in Fig. 8b reveal a numerical instability for C0=0.5,

N∗=16, and ωh∆ti =1.86; and in Fig. 8c for C0=1.04, N∗=64, and ωh∆ti =7.4. These results are

consistent with the stability boundaries determined in Section 2.2.

We show results from simulations with no gradients in Fig. 9, Te=Ti, xi ∆=ρ , 16×16

grid, 256 ions per cell, smoothing factor a=1.7, and various choices for N∗ and the number of

electrons per cell. These simulations of thermal noise are intended to show the influence of orbit

averaging on important observables, such as the electric potential mode amplitudes and the ion

thermal flux, and to address the questions of whether the orbit averaging reduces the noise and

allows a reduction of the number of electrons. The results from one frame to the next should not

be identical. We present results for |eφ/Te| for the (kx,ky)=(1,−1) mode and the spatially averaged

ion thermal flux in the x direction normalized to the mean ion thermal energy times the sound

speed as functions of time in Fig. 9. The deviations of the thermal flux from zero are due purely

to statistical noise and thermal fluctuations. Both ions and electrons contribute to the statistical



noise. The orbit averaging of the electrons can reduce only the electron contribution to the noise.

For equal numbers of ions and electrons, increasing N∗ reduces the electron contribution to the

statistical noise; but the ion contribution to the noise should persist (Fig. 9). With N∗>>1, we

were able to reduce the number of electrons significantly, e.g., from 256 to 64 per cell, while

leaving the average thermal fluctuation levels in the same range (Figs. 9c and 9d). Furthermore, a

numerically stable simulation was performed with ωh∆ti =5.8 and N∗=50 for a smoothing factor

a=1.7.

Code timings on a single processor Cray 2 for the semi-implicit orbit-averaged algorithm

with fully vectorized gather-scatter [11] for the charge density accumulation and the force

interpolation to the particles are displayed in Fig. 10.  The timings were calculated by dividing

the processing time per electron timestep by the total number of particles (2Ni) for equal numbers

of electrons and ions.  The electron timestep is used so that a reference simulation with equal

electron and ion timesteps and equal numbers of particles can be used, against which the code

efficiency improvements due to electron subcycling and orbit-averaging can be measured. The

reduction in code timing with increasing N∗ is a result of the electron subcycling; i.e., we are not

advancing the ions as often.  The orbit averaging leads to an additional improvement in the total

cost of the simulation by allowing the reduction of the number of electrons if N∗>>1 while

maintaining an acceptable statistical noise level.  The timing for advancing an individual electron

or ion over its respective timestep remains the same. Thus, we have obtained an order of

magnitude improvement in the code timing for a simulation of a warm quiescent plasma through

the use of the semi-implicit orbit-averaged algorithm.

4. Concluding Remarks

In this paper, we have reported our experience in implementing a semi-implicit orbit-

averaged gyrokinetic particle simulation algorithm.  We found that our first algorithm introduced

earlier in [2] was subject to a temporally growing error.  This motivated the revised algorithm



introduced and analyzed in Sec. 2.  Simulation experience with the revised algorithm was

reported in Sec. 3.  The results of the simulation with the revised algorithm are in substantial

agreement with the published results [7] and those from a simulation with an explicit time-

integration algorithm for the ηi=4 ITG instability.  The simulation results reported in Sec. 3 also

demonstrate good electron noise-reduction characteristics and a significant improvement in the

code timings for orbit-averaged simulation of a warm quiescent plasma.

The algorithm implementation described here is restricted to the case of a possibly tilted

magnetic field with no shear. Some comments on the possible extension of this algorithm to

allow for magnetic shear are given in the Appendix. This work should be considered as a

stepping stone in the development of more powerful particle simulation methods.

An important limitation on the applicability of the semi-implicit orbit-averaged

gyrokinetic algorithm was discovered in the course of our work.  The limitation derives from

timestep constraints set by the physics of the application.  When the dominant timestep

constraints are set by accuracy restrictions determined by equilibrium conditions, (e.g., particle

Courant conditions set by thermal velocities for the ions and electrons, vi∆ti<∆x|| and ve∆te<∆x||,

where ∆x||=∆x/θ, eieiei mTv ,,
2
, /= , and θ=By/B0 (<<1) ), then there is a large disparity in

timescales: ∆ti/∆te=O(mi/me)1/2 for Ti/Te=O(1). The orbit-averaged algorithm is designed to take

advantage of this disparity to achieve an improvement in computational efficiency.  Note that

because we are specifically interested in physical circumstances for which ion Landau resonance

might be important, viz., ω /k||vi=O(1), the timesteps for the evolution of the fields and the ion

advance have been taken to be equal.  If most of the electrons are moving much faster than the

ions, we need to use a smaller timestep to accurately resolve their trajectories, but we can average

their contributions to the charge and current densities in Maxwell's equations to reduce the

computational costs.  However, the simulation timesteps cannot be chosen without regard to

finite-amplitude considerations.  In particular, in the gyrokinetic simulation model the electron

E×B velocity VE and the ion gyroaveraged E×B VG must satisfy VE∆te<∆x and VG∆ti<∆x. In

general, VG ≤ VE, but for 1<<⊥ ik ρ , VG and VE could be comparable; and there would be little



disparity between the perturbed electron and ion drift velocities. This circumstance presents an

impediment to the use of orbit averaging. For example, if (VG/vi)>(∆x/∆x||), then an ion timestep

must be used to resolve the perturbed drift motion accurately that is smaller than that determined

by resolving the equilibrium thermal streaming parallel to the magnetic field.

In the ηi=4 ITG instability test case reported here, the wave amplitudes and the perturbed

drift motion that were observed required the use of a relatively small timestep; and the value of

N∗=∆ti/∆te was relatively small, viz., N∗=3. Relatively large electric potentials were observed:

|eφ/Te|≤0.18. The simulation timesteps were constrained by the Courant conditions on the peak

velocity perturbations, which satisfied VE∆te/∆x=0.3 and VG∆ti/∆x=0.08 for ∆ti/∆te=3. With these

timesteps, the Courant conditions for the thermal velocities were easily satisfied, θve∆te/∆x=0.06

and θvi∆ti/∆x=0.004 for θ=0.01. It should be noted that the simulations with the explicit and

semi-implicit algorithms were both subject to these Courant conditions.

Simulations of the ITG instability modeling larger systems with weaker gradients than

those used in our examples might be expected to saturate at smaller wave amplitudes and with

weaker perturbed drifts on the basis of free energy or mixing-length arguments [7]. Mixing-

length arguments lead to estimates for the perturbed electric potential at saturation eφ/Te∼1/kLn or

1/kLt, where k is the wavenumber appropriate to the fastest growing modes or the modes

dominating the fluctuation spectrum. These arguments have been found useful in providing

estimates, sometimes upper bounds, for fluid and particle simulations of turbulent transport.

Because we know of no better a priori estimate of the saturated turbulence, we use the mixing-

length estimate to express VE/ve=ckφ/Bve∼ρ/Ln, where ρe is the thermal electron Larmor radius.

Thus, VE/ve is proprotional to 1−
nL ; systems with weaker gradients might be more comparatible

with the use of large values of ∆ti and N∗ in an orbit-averaged algorithm.  In general, physics

applications in which finite-amplitude effects are relatively weaker so that equilibrium-

determined constraints are dominant and in which there is a large disparity between the ion

timescales and the faster electron timescales, will provide more fruitful opportunities for the use

of the semi-implicit orbit-averaged algorithm.



APPENDIX: Extension of the Algorithm to Include Magnetic Shear

The algorithms described in the text of this paper were restricted to having a tilted,

unsheared magnetic field. A more relevant model of the magnetic field for physical applications

is one in which there is magnetic shear, By=B0(x−x0)/Ls, where Ls is the magnetic shear length.

The methodology of the particle pushing and charge accumulation remains unchanged from the

algorithm described in the text, but the solution of the field equation must be revised for

magnetic shear. In the presence of magnetic shear, the explicit dependence of ∇|| on x,

( ) ( )yLxxz s ∂∂−+∂∂=∇ − /)(/ 1
0|| , frustrates the use of Fourier transforms in x to solve the semi-

implicit Poisson equation, Eq. (4). Here we suggest a method for solving Eq. (4) when there is

magnetic shear.

If one cannot Fourier transform in x, then the evaluation of

( ) [ ])exp(1/ 0
2222 bIg iipi −−=∇Ω− −

⊥ λω , where λi=vi/ω i, cannot be performed in k space. Research

on gyrofluid models [12] has demonstrated the utility of Padé approximation, I0exp(−b)≈(1+b2)-1

for 0≤b≤9. For simplicity we drop the vacuum polarization term ∇2 in Eq. (3) (which is typically

small), use the Padé approximation for I0exp(−b), and apply the operator ( ) ( )2222 11 ⊥∇−=+ iii b ρλλ

to both sides of Eq. (3) to obtain

( ) [ ]{ } ( ) .1
~

1 222
10

22222 SC iiNeiii ⊥+⊥⊥ ∇−=∇⋅⋅∇∇−+∇− ρλφρλρ ? (A1)

where [ ]( )NeN

ei
Ne CnnnS φπ ∇⋅⋅∇−−=

++ ?0114  has explicit dependence on x through ∇|| (see

Eq. (4)). The expression in the curly bracket on the left side of Eq. (A1) is an elliptic operator

whose finite-difference representation in x leads to a matrix that is sparse and banded. Fourier

transforms can still be used to evaluate the y and z derivatives in k space. We expect that the

solution of the resulting sparse-matrix equation will be amenable to one of the many methods



that exist for such equations, but we have made no attempt to implement this algorithm extension

as yet.
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Figures

Fig. 1. The modulus of the amplification factor |λ| as function of  22
ih t∆ω  for C0=0.02, 0.5, 1.0 in

the first algorithm.



Fig. 2. The real and imaginary parts of the (kx,ky)=(3,3) Fourier component of eφ/Te as a function

of time.



Fig. 3. Interleaving of advancing ions and electrons, and solving for the self-consistent electric

field in the revised orbit-averaged algorithm.



Fig. 4. The modulus of the amplification factor |λ| as a function of 6/22
ih t∆ω  for C0=0.8 and 1.02

in the revised algorithm.



Fig. 5. Simulation results from an explicit subcycled simulation of the ηi=4 instability in an
unsheared magnetic field. The thermal ion flux has been summed over all the ions and
normalized to the product of the number of ions times the ion temperature and the ion sound
speed. The ion kinetic energy is the sum of all the ion kinetic energies in code units, and the field
energy is the sum of the electric field and the ion polarization dielectric energy densities
integrated over the volume in the same units as the ion kinetic energy. It is the nature of the ITG
instability that the ion parallel kinetic energy is depleted at the expense of exciting the ITG
modes to finite amplitudes. The real and imaginary parts and the magnitude of the Fourier
amplitude of |eφ/Te| for the (kx ,ky)=(1,−1) mode are also plotted as a function of time.



Fig. 6. Simulation results from a semi-implicit orbit-averaged simulation of the ηi=4 instability

with equal numbers of electrons and ions.



Fig. 7. Simulation results from a semi-implicit orbit-averaged simulation of the ηi=4 instability

with half as many doubly-charged electrons as ions.



Fig. 8. Plots of |eφ/Te| for the (kx ,ky)=(1,−1) Fourer mode from semi-implicit orbit-averaged
simulations of a warm quiescent plasma for (a) C0=1.04 and ωh∆ti=1.86, (b) C0=0.5 and
ωh∆ti=1.86, and (c) C0=1.04 and ωh∆ti=7.4.



Fig. 9. Simulation results for the normalized, time-filtered ion thermal flux Qx in x and |eφ/Te| for
the (kx,ky)=(1,−1) Fourier mode as functions of time for a warm quiescent plasma.  (a) 256
electrons per cell, N∗=3, and the explicit subcycled algorithm.  (b) 256 electrons per cell, N∗=25,
and the semi-implicit orbit-averaged algorithm.  (c) 64 electrons per cell, N∗=16, and the semi-
implicit orbit-averaged algorithm.  (d) 64 electrons per cell, N∗=50, and the semi-implicit orbit-
averaged algorithm.  The dashed curves on the |eφ/Te| plots have been time-filtered.



Fig. 10. Code timings (per particle per timestep) for semi-implicit orbit-averaged simulations of

a warm quiescent plasma as a function of the subcycling parameter N∗=∆ti/∆te for equivalent

numbers of ions and electrons, and for one-fourth the number of electrons in a simulation that

obtained similar physical results.


